Billeder på siden
PDF
ePub

have been formed by subsidence; and other fluctuations may have occurred, by which the materials brought down from thence by rivers to the sea have acquired a distinct mineral character.

It is well known that the stream of the Mississippi is charged with sediment of a different colour from that of the Arkansas and Red Rivers, which are tinged with red mud, derived from rocks of porphyry and red gypseous clays in 'the far west.' The waters of the Uruguay, says Darwin, draining a granitic country, are clear and black, those of the Parana, red.' The mud with which the Indus is loaded, says Burnes, is of a clayey hue, that of the Chenab, on the other hand, is reddish, that of the Sutlej is more pale.' The same causes which make these several rivers, sometimes situated at no great distance the one from the other, to differ greatly in the character of their sediment, will make the waters draining the same country at different epochs, especially before and after great revolutions in physical geography, to be entirely dissimilar. It is scarcely necessary to add that marine currents will be affected in an analogous manner in consequence of the formation of new shoals, the emergence of new islands, the subsidence of others, the gradual waste of neighbouring coasts, the growth of new deltas, the increase of coral reefs, volcanic eruptions, and other changes.

Uniformity of change considered, secondly, in reference to the living creation.—Secondly, in regard to the vicissitudes of the living creation, all are agreed that the successive groups of sedimentary strata found in the earth's crust are not only dissimilar in mineral composition for reasons above alluded to, but are likewise distinguishable from each other by their organic remains. The general inference drawn from the study and comparison of the various groups, arranged in chronological order, is this: that at successive periods distinct tribes of animals and plants have inhabited the land and waters, and that the organic types of the newer formations are more analogous to species now existing than those of more ancient rocks. If we then turn to the present state of the animate creation, and enquire whether it has

1 Darwin's Journal, p. 163, 2nd edit., p. 139.
2 Journ. Roy. Geograph. Soc., vol. iii., p. 142.

[ocr errors]

now become fixed and stationary, we discover that, on the contrary, it is in a state of continual flux-that there are many causes in action which tend to the extinction of species, and which are conclusive against the doctrine of their unlimited durability.

There are also causes which give rise to new varieties and races in plants and animals, and new forms are continually supplanting others which had endured for ages. But natural history has been sucessfully cultivated for so short a period, that a few examples only of local, and perhaps but one or two of absolute, extirpation of species can as yet be proved, and these only where the interference of man has been conspicuous. It will nevertheless appear evident, from the facts and arguments detailed in the chapters which treat of the geographical distribution of species in the next volume, that man is not the only exterminating agent; and that, independently of his intervention, the annihilation of species is promoted by the multiplication and gradual diffusion of every animal or plant. It will also appear that every alteration in the physical geography and climate of the globe cannot fail to have the same tendency. If we proceed still farther, and enquire whether new species are substituted from time to time for those which die out, we find that the successive introduction of new forms appears to have been a constant part of the economy of the terrestrial system, and if we have no direct proof of the fact it is because the changes take place so slowly as not to come within the period of exact scientific observation. To enable the reader to appreciate the gradual manner in which a passage may have taken place from an extinct fauna to that now living, I shall say a few words on the fossils of successive Tertiary periods. When we trace the series of formations from the more ancient to the more modern, it is in these Tertiary deposits that we first meet with assemblages of organic remains having a near analogy to the fauna of certain parts of the globe in our own time. In the Eocene, or oldest subdivisions, some few of the testacea belong to existing species, although almost all of them, and apparently all the associated vertebrata, are now extinct. These Eocene strata are succeeded by a great number of more modern deposits, which depart gradually in the

character of their fossils from the Eocene type, and approach more and more to that of the living creation. In the present state of science, it is chiefly by the aid of shells that we are enabled to arrive at these results, for of all classes the testacea are the most generally diffused in a fossil state, and may be called the medals principally employed by nature in recording the chronology of past events. In the Upper Miocene rocks (No. 5 of the table, p. 135) we begin to find a considerable number, although still a minority, of recent species, intermixed with some fossils common to the preceding, or Eocene, epoch. We then arrive at the Pliocene strata, in which species now contemporary with man begin to preponderate, and in the newest of which nine-tenths of the fossils agree with species still inhabiting the neighbouring sea. It is in the Post-Tertiary strata, where all the shells agree with species now living, that we have discovered the first or earliest known remains of man associated with the bones of quadrupeds, some of which are of extinct species.

In thus passing from the older to the newer members of the Tertiary system, we meet with many chasms, but none which separate entirely, by a broad line of demarcation, one state of the organic world from another. There are no signs of an abrupt termination of one fauna and flora, and the starting into life of new and wholly distinct forms. Although we are far from being able to demonstrate geologically an insensible transition from the Eocene to the Miocene, or even from the latter to the recent fauna, yet the more we enlarge and perfect our general survey, the more nearly do we approximate to such a continuous series, and the more gradually are we conducted from times when many of the genera and nearly all the species were extinct, to those in which scarcely a single species flourished which we do not know to exist at present. Dr. A. Philippi, indeed, after an elaborate comparison of the fossil tertiary shells of Sicily with those now living in the Mediterranean, announced, as the result of his examination, that there are strata in that island which attest a very gradual passage from a period when only thirteen in a hundred of the shells were like the species now living in the sea, to an era when the recent species had attained a proportion of ninety-five in a hundred.

There is, therefore, evidence, he says, in Sicily of this revolution in the animate world having been effected 'without the intervention of any convulsion or abrupt changes, certain species having from time to time died out, and others having been introduced, until at length the existing fauna was elaborated.'

In no part of Europe is the absence of all signs of man or his works, in strata of comparatively modern date, more striking than in Sicily. In the central parts of that island we observe a lofty table-land and hills, sometimes rising to the height of 3,000 feet, capped with a limestone, in which from 70 to 85 per cent. of the fossil testacea are specifically identical with those now inhabiting the Mediterranean. These calcareous and other argillaceous strata of the same age are intersected by deep valleys which appear to have been gradually formed by denudation, but have not varied materially in width or depth since Sicily was first colonised by the Greeks. The limestone, moreover, which is of so late a date in geological chronology, was quarried for building those ancient temples of Girgenti and Syracuse, of which the ruins carry us back to a remote era in human history. If we are lost in conjectures when speculating on the ages required to lift up these formations to the height of several thousand feet above the sea, and to excavate the valleys, how much more remote must be the era when the same rocks were gradually formed beneath the waters!

The intense cold of the Glacial period was spoken of in the tenth chapter. Although we have not yet succeeded in detecting proofs of the origin of man antecedently to that epoch, we have yet found evidence that most of the testacea, and not a few of the quadrupeds, which preceded, were of the same species as those which followed the extreme cold. To whatever local disturbances this cold may have given rise in the distribution of species, it seems to have done little in effecting their annihilation. We may conclude therefore, from a survey of the tertiary and modern strata, which constitute a more complete and unbroken series than rocks of older date, that the extinction and creation of species have been, and are, the result of a slow and gradual change in the organic world.

Uniformity of change considered, thirdly, in reference to subterranean movements.-Thirdly, to pass on to the last of the three topics before proposed for discussion, the reader will find, in the account given in the Second Book, Vol. II., of the earthquakes recorded in history, that certain countries have from time immemorial, been rudely shaken again and again; while others, comprising by far the largest part of the globe, have remained to all appearance motionless. In the regions of convulsion rocks have been rent asunder, the surface has been forced up into ridges, chasms have opened, or the ground throughout large spaces has been permanently lifted up above or let down below its former level. In the regions of tranquillity some areas have remained at rest, but others have been ascertained, by a comparison of measurements made at different periods, to have risen by an insensible motion, as in Sweden, or to have subsided very slowly, as in Greenland. That these same movements, whether ascending or descending, have continued for ages in the same direction has been established by historical or geological evidence. Thus we find on the opposite coasts of Sweden that brackish water deposits, like those now forming in the Baltic, occur on the eastern side, and upraised strata filled with purely marine shells, now proper to the ocean, on the western coast. Both of these have been lifted up to an elevation of several hundred feet above high-water mark. The rise within the historical period has not amounted to many yards, but the greater extent of antecedent upheaval is proved by the occurrence in inland spots, several hundred feet high, of deposits filled with fossil shells of species now living either in the ocean or the Baltic.

It must in general be more difficult to detect proofs of slow and gradual subsidence than of elevation, but the theory which accounts for the form of circular coral reefs and lagoon islands, and which will be explained in the concluding chapter of this work, will satisfy the reader that there are spaces on the globe, several thousand miles in circumference, throughout which the downward movement has predominated for ages, and yet the land has never, in a single instance, gone down suddenly for several hundred feet at once. Yet geology demonstrates that the persistency of subterranean

« ForrigeFortsæt »