Billeder på siden
PDF
ePub

We may here add a few words on the non-transformation of yeast into penicillium glaucum.

If at any time during fermentation we pour off the fermenting liquid, the deposit of yeast remaining in the vessel may continue there, in contact with air, without our ever being able to discover the least formation of penicillium glaucum in it. We may keep a current of pure air constantly passing through the flask; the experiment will give the same result. Nevertheless, this is a medium peculiarly adapted to the development of this mould, inasmuch as if we were to introduce merely a few spores of penicillium an abundant vegetation of that growth will afterwards appear on the deposit. The descriptions of Messrs. Turpin, Hoffmann, and Trécul have, therefore, been based on one of these illusions which we meet with so frequently in microscopical observations.

66

When we laid these facts before the Academy," M. Trécul professed his inability to comprehend them:" According to M. Pasteur," he said, "the yeast of beer is anaërobian, that is to say, it lives in a liquid deprived of free oxygen; and to become mycoderma or penicillium it is above all things necessary that it should be placed in air, since, without this, as the name signifies, an aërobian being cannot exist. To bring about the transformation of the yeast of beer into mycoderma cerevisiae or into penicillium glaucum we must accept the conditions under which these two forms are obtained. If M. Pasteur will persist in keeping his yeast in media which are incompatible with the desired modification, it is clear that the results which he obtains must always be negative."

Contrary to this perfectly gratuitous assertion of M. Trécul's we do not keep our yeast in media which are calculated to prevent its transformation into penicillium. As we have just seen, the principal aim and object of our experiment was to bring this minute plant into contact with air, and under conditions that would allow the penicillium to develop with perfect freedom. We conducted our experiments exactly as Turpin and Hoffmann conducted theirs,

10 PASTEUR, Comptes rendus de l'Académie, vol. lxxviii., pp. 213-216. 11 TRECUL, Comptes rendus de l'Académie, vol. lxxviii., pp. 217, 218.

and exactly as they stipulate that such experiments should be conducted-with the one sole difference, indispensable to the correctness of our observations, that we carefully guarded ourselves against those causes of error which they did not take the least trouble to avoid. It is possible to produce a ready entrance and escape of pure air in the case of the double-necked flasks which we have so often employed in the course of this work, without having recourse to the continuous passage of a current of air. Having made a file-mark on the thin curved neck at a distance of two or three centimetres (an inch) from the flask, we must cut round the neck at this point with a glazier's diamond, and then remove it, taking care to cover the opening immediately with a sheet of paper which has been passed through the flame, and which we must fasten with a thread round the part of the neck still left. In this manner we may increase or prolong the fructification of fungoid growths, or the life of the aërobian ferments in our flasks.

What we have said of penicillium glaucum will apply equally to mycoderma cerevisiae. Notwithstanding that Turpin and Trécul may assert to the contrary, yeast, in contact with air as it was under the conditions of the experiment just described, will not yield mycoderma vini or mycoderma cerevisiae any more than it will penicillium.

The experiments described in the preceding paragraphs on the increase of organized ferments in mineral media of the composition described, are of the greatest physiological interest. Amongst other results, they show that all the proteic matter of ferments may be produced by the vital activity of the cells, which, apart altogether from the influence of light or free oxygen (unless indeed, we are dealing with aërobian moulds which require free oxygen), have the power of developing a chemical activity between carbohydrates, ammoniacal salts, phosphates, and sulphates of potassium and magnesium. It may be admitted with truth that a similar effect obtains in the case of the higher plants, so that in the existing state of science we fail to conceive what serious reason can be urged against our considering

this effect as general. It would be perfectly logical to extend the results of which we are speaking to all plants, and to believe that the proteic matter of vegetables, and perhaps of animals also, is formed exclusively by the activity of the cells operating upon the ammoniacal and other mineral salts of the sap or plasma of the blood, and the carbo-hydrates, the formation of which, in the case of the higher plants, requires only the concurrence of the chemical impulse of green light.

Viewed in this manner, the formation of the proteic substances, would be independent of the great act of reduction of carbonic acid gas under the influence of light. These substances would not be built up from the elements of water, ammonia, and carbonic acid gas, after the decomposition of this last; they would be formed where they are found in the cells themselves, by some process of union between the carbo-hydrates imported by the sap, and the phosphates of potassium and magnesium and salts of ammonia. Lastly, in vegetable growth, by means of a carbohydrate and a mineral medium, since the carbo-hydrate is capable of many variations, and it would be difficult to understand how it could be split up into its elements before serving to constitute the proteic substances, and even cellulose substances, as these are carbo-hydrates. We have commenced certain studies in this direction.

If solar radiation is indispensable to the decomposition of carbonic acid and the building up of the primary substances in the case of higher vegetable life, it is still possible that certain inferior organisms may do without it and nevertheless yield the most complex substances, fatty or carbo-hydrate, such as cellulose, various organic acids, and proteic matter; not, however, by borrowing their carbon from the carbonic acid which is saturated with oxygen, but from other matters still capable of acquiring oxygen, and so of yielding heat in the process, such as alcohol and acetic acid, for example, to cite merely carbon compounds most removed from organization. As these last compounds, and a host of others equally adapted to serve as the carbonaceous food of mycoderms and the mucedines, may be produced synthetically by means of carbon and the vapour of

water, after the methods that science owes to Berthelot, it follows that, in the case of certain inferior beings, life would be possible even if it should be that the solar light was extinguished."

12 See on this subject the verbal observations which we addressed to the Academy of Sciences at its meetings of April 10th and 24th, 1876.

T

THE GERM THEORY

AND ITS APPLICATIONS TO

MEDICINE AND SURGERY'

HE Sciences gain by mutual support. When, as the result of my first communications on the fermentations in 1857-1858, it appeared that the ferments, properly so-called, are living beings, that the germs of microscopic organisms abound in the surface of all objects, in the air and in water; that the theory of spontaneous generation is chimerical; that wines, beer, vinegar, the blood, urine and all the fluids of the body undergo none of their usual changes in pure air, both Medicine and Surgery received fresh stimulation. A French physician, Dr. Davaine, was fortunate in making the first application of these principles to Medicine, in 1863.

Our researches of last year, left the etiology of the putrid disease, or septicemia, in a much less advanced condition than that of anthrax. We had demonstrated the probability that septicemia depends upon the presence and growth of a microscopic body, but the absolute proof of this important conclusion was not reached. To demonstrate experimentally that a microscopie organism actually is the cause of a disease and the agent of contagion, I know no other way, in the present state of Science, than to subject the microbe (the new and happy term introduced by M. Sedillot) to the method of cultivation out of the body. It may be noted that in twelve successive cultures, each one of only ten cubic centimeters volume, the original drop will be diluted as if placed in a volume of fluid equal to the total volume 1 Read before the French Academy of Sciences, April 29th, 1878. Pub lished in Comptes Rendus de l'Académie des Sciences, lxxxvi., pp. 1037-43.

« ForrigeFortsæt »