Positivity in Algebraic Geometry I: Classical Setting: Line Bundles and Linear Series

Springer, 2004 - 387 sider
0 Anmeldelser

This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments.

Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.

Hvad folk siger - Skriv en anmeldelse

Vi har ikke fundet nogen anmeldelser de normale steder.

Andre udgaver - Se alle

Henvisninger til denne bog

Alle Bogsøgningsresultater »

Bibliografiske oplysninger