Billeder på siden


Cause and Effect; and so far as the Aristotelian philosophy reasons from these assumptions, it has a real foundation, though even in this case the conclusions are often insecure. We have an example of this reasoning in the eighth Book?, where he proves that there never was a time in which change and motion did not exist; “For if all things were at rest, the first motion must have been produced by some change in some of these things; that is, there must have been a change before the first change;" and again, “How can before and after apply when time is not? or how can time be when motion is not? If,” he adds, “time is a numeration of motion, and if time be eternal, motion must be eternal.” But he sometimes introduces principles of a more arbitrary character; and besides the general relations of thought, takes for granted the inventions of previous speculators; such, for instance, as the then commonly received opinions concerning the frame of the world. From the assertion that motion is eternal, proved in the manner just stated, Aristotle proceeds by a curious train of reasoning, to identify this eternal motion with the diurnal motion of the heavens. “There must,” he says,

“be something which is the First Movers :” this follows from the relation of causes and effects. Again, “motion must go on constantly, and, therefore, must be either continuous or successive. Now what

[ocr errors]
[merged small][merged small][ocr errors]


[ocr errors]

is continuous is more properly said to take place constantly, than what is successive. Also the continuous is better; but we always suppose that which is better to take place in nature, if it be possible. The motion of the First Mover will, therefore, be continuous, if such an eternal motion be possible.” We here see the vague judgment of better and worse introduced, as that of natural and unnatural was before, into physical reasonings. I proceed with Aristotle's argument'.

“We have now, therefore, to show that there may be an infinite, single, continuous motion, and that this is circular.” This is, in fact, proved, as may readily be conceived, from the consideration that a body may go on perpetually revolving uniformly in a circle. And thus we have a demonstration, on the principles of this philosophy, that there is and must be a First Mover, revolving eternally with a uniform circular motion.

Though this kind of philosophy may appear too trifling to deserve being dwelt upon, it is important for our purpose so far as to exemplify it, that we may afterwards advance, confident that we have done it no injustice.

I will now pass from the doctrines relating to the motions of the heavens, to those which concern the material elements of the universe. And here it may be remarked that the tendency (of which we are here tracing the developement) to extract specu

9 viii. 8.


lative opinions from the relations of words, must be very natural to man; for the very widely accepted doctrine of the Four Elements which appears to be founded on the opposition of the adjectives hot and cold, wet and dry, is much older than Aristotle, and was probably one of the earliest of philosophical dogmas. The great master of this philosophy, however, puts the opinion in a more systematic manner than his predecessors.

“We seek,” he says, “ the principles of sensible things, that is, of tangible bodies. We must take, therefore, not all the contrarieties of quality, but those only which have reference to the touch. Thus black and white, sweet and bitter, do not differ as tangible qualities, and therefore must be rejected from our consideration.

“Now the contrarieties of quality which refer to the touch are these : hot, cold; dry, wet; heavy, light; hard, soft; unctuous, meagre; rough, smooth; dense, rare.” He then proceeds to reject all but the four first of these, for various reasons; heavy and light, because they are not active and passive qualities; the others, because they are combinations of the four first, which therefore he infers to be the four elementary qualities.

“ 11 Now in four things there are six combinations of two; but the combinations of two opposites, as hot and cold, must be rejected; we have, therefore, four elementary combinations, which agree 10 De Gen. et Corrupt ii. 2.


il ji. 3.


with the four apparently elementary bodies. Fire is hot and dry; air is hot and wet (for steam is air); water is cold and wet, earth is cold and dry.” It may

be remarked that this disposition to assume that some common elementary quality must exist in the cases in which we habitually apply a common adjective, as it began before the reign of the Aristotelian philosophy, so also survived its influence. Not to mention other cases, it would be difficult to free Bacon's Inquisitio in naturam calidi, “Examination of the nature of heat,” from the charge of confounding together very different classes of phenomena under the cover of the word hot.

The correction of these opinions concerning the elementary composition of bodies belongs to an advanced period in the history of physical knowledge, even after the revival of its progress. But there are some of the Aristotelian doctrines which particularly deserve our attention, from the prominent share they had in the very first beginnings of that revival, I mean the doctrines concerning motion.

These are still founded upon the same mode of reasoning from adjectives; but in this case, the result follows, not only from the opposition of the words, but also from the distinction of their being absolutely or relatively true. “Former writers," says Aristotle, “have considered heavy and light relatively only, taking cases, where both things have weight, but one is lighter than the other; and they imagined that, in this way, they defined what was absolutely (andws) heavy and light.” We now know that things which rise by their lightness do so only because they are pressed upwards by heavier surrounding bodies; and this assumption of absolute levity, which is evidently gratuitous, or rather merely nominal, entirely vitiated the whole of the succeeding reasoning. The inference was, that fire must be absolutely light, since it tends to take its place above the other three elements; earth absolutely heavy, since it tends to take its place below fire, air, and water. The philosopher argued also, with great acuteness, that air, which tends to take its place below fire and above water, must do so by its nature, and not in virtue of any combination of heavy and light elements. “For if air were composed of the parts which give fire its levity, joined with other parts which produce gravity, we might assume a quantity of air so large, that it should be lighter than a small quantity of fire, having more of the light parts.” It thus follows that each of the four elements tends to its own place, fire being the highest, air the next, water the next, and earth the lowest.

The whole of this train of errors arises from fallacies which have a verbal origin ;—from considering light as opposite to heavy; and from considering levity as a quality of a body, instead of regarding it as the effect of surrounding bodies.

It is worth while to notice that a difficulty which

« ForrigeFortsæt »